Exotic Structures of $\mathbf{S i}_{\mathbf{2}} \mathbf{B}_{\mathbf{2}} \mathbf{H}_{\mathbf{4}}$

Eluvathingal D. Jemmis, ${ }^{*, \dagger}$ Govindan Subramanian, ${ }^{\dagger,}{ }^{\dagger}$ Anatoli A. Korkin, ${ }^{\ddagger}$ Matthias Hofmann, ${ }^{\ddagger}$ and Paul v. R. Schleyer*,*
School of Chemistry, University of Hyderabad, Hyderabad 500 046, India, and Computer Chemistry Center, Institut für Organische Chemie I, Universität Erlangen-Nürnberg, Henkestrasse 42, D-91054 Erlangen, Germany

Received: July 1, 1996; In Final Form: October 30, 1996^{\otimes}

Abstract

The potential energy surface of $\mathrm{Si}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}$, explored ab initio at the MP2/6-31G* and density functional theory, Becke3LYP/6-311+G** levels, is rich in detail. Twelve minima were found out of the 39 stationary points located. 1,3-Disiladiboretene (1a), with a puckered four-membered ring, is predicted to be the global minimum. Its calculated inversion barrier ($1.2 \mathrm{kcal} / \mathrm{mol}$), however, is much lower than that of the analogous 1,3 -diboretene $(17.0 \mathrm{kcal} / \mathrm{mol})$. The relative energies of two other $\mathrm{Si}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}$ isomers (5 and 7) with $\mathrm{B}-\mathrm{H}-\mathrm{Si}$ bridges are only $2.0 \mathrm{kcal} / \mathrm{mol}$ above $\mathbf{1 a}$. The relative energies of $\mathbf{9}$ and $\mathbf{1 5 a}$, both with planar pentacoordinate borons, are 7.3 and $27.1 \mathrm{kcal} / \mathrm{mol}$. The acyclic (18) and linear (22a,b) isomers are noncompetitive energetically. Many other $\mathrm{Si}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}$ silaboranes, possessing similar structures and bonding as the corresponding carboranes, are calculated to be saddle points. In general, hydrogen bridging and cyclic π-delocalization stabilize $\mathrm{Si}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}$ isomers, while structures with multiply bonded silicon are unfavorable.

Introduction

Theoretical calculations first revealed the cyclobutadiene dication $\left(\mathrm{C}_{4} \mathrm{H}_{4}{ }^{2+}\right)^{1}$ to be nonplanar (Figure 1) despite being Hückel 2π electron aromatic. ${ }^{2}$ Subsequently, the excellent agreement between the computed NMR-IGLO chemical shifts ${ }^{3}$ and the experimental values ${ }^{4}$ provided conclusive evidence for the nonplanarity of the tetramethyl derivative $\left.\mathrm{C}_{4}\left(\mathrm{CH}_{3}\right)\right)^{2+}$. The neutral isoelectronic 1,3-diboretene (1,3- $\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}$) and 1,3$\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{H}_{2}\left(\mathrm{NH}_{2}\right)_{2}$ also have nonplanar geometries and similar electronic structures. ${ }^{5}$ Moreover, the theoretical predictions were verified subsequently by X-ray crystallography on 1,3-t$\mathrm{Bu}_{2} \mathrm{C}_{2}\left(\mathrm{BNMe}_{2}\right)_{2}{ }^{6 \mathrm{~b}}$ and on other derivatives. ${ }^{6 \mathrm{arc}-\mathrm{g}}$ However, Korkin et al., $\mathrm{s}^{7 a}$ recent computations found $\mathrm{Si}_{4} \mathrm{H}_{4}{ }^{2+}$, the homologue of $\mathrm{C}_{4} \mathrm{H}_{4}{ }^{2+}$, to be nearly planar. ${ }^{7}$ What is the situation with 1,3 -disiladiboretene ($1,3-\mathrm{Si}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}$)?

While the potential energy surfaces (PES) of $\mathrm{C}_{4} \mathrm{H}_{4}{ }^{2+}$ and $\mathrm{Si}_{4} \mathrm{H}_{4}{ }^{2+}$ have not been explored fully, ${ }^{1 \mathrm{~b}, 7}$ ab initio MO studies revealed remarkable structural variations for $\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}$ isomers. ${ }^{8}$ The resulting fruitful interplay between theory and experiment guided the synthesis of many $\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{R}_{4}$ isomers by Berndt and co-workers. ${ }^{9}$ Such successes serve as additional stimuli for the present exploration of the PES of $\mathrm{Si}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}$.

The experimental literature on silaboranes is rather scarce. ${ }^{10}$ The recent synthesis and X-ray structure determination of icosahedral mono- and disilaboranes by Seyferth, Wesemann, and their co-workers ${ }^{10}$ mark the beginning of the combined boron-silicon chemistry. Smaller silaboranes like SiBH_{n} (n $=1-5),{ }^{11} \mathrm{SiB}_{2} \mathrm{H}_{4},{ }^{12 \mathrm{a}}$ and $\mathrm{Si}_{2} \mathrm{BH}_{3}{ }^{12 \mathrm{~b}}$ have been explored only computationally. These studies point to a structural correlation between boranes and silaboranes, i.e. the analogy between trivalent boron and divalent silicon moieties. ${ }^{13}$ Thus, by equating a $\mathrm{B}-\mathrm{H}$ bond pair to Si : (σ lone pair), the doubly bridged $\mathrm{Si}(\mu-\mathrm{H})_{2} \mathrm{Si}\left(C_{2 v}\right)^{14}$ and silacyclopropenylidene $\left(\mathrm{C}_{2} \mathrm{H}_{2}-\right.$ $\mathrm{Si})^{15 \mathrm{a}, \mathrm{c}}$ are related to the doubly bridged $\mathrm{B}_{2} \mathrm{H}_{4}\left(\mathrm{HB}(\mu-\mathrm{H})_{2} \mathrm{BH}, C_{2 v}\right)$ and to borirene $\left.\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{BH}, \mathrm{C}_{2 v}\right)\right)^{16}$

Further ab initio studies on small silicon compounds ${ }^{17}$ have

[^0]

Figure 1. Becke3LYP/6-311+G** optimized geometries of $\mathrm{C}_{4} \mathrm{H}_{4}{ }^{2+}$, $1,3-\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}$, and $\mathrm{Si}_{4} \mathrm{H}_{4}{ }^{2+}$.
shown that the structural preferences can be quite different from those of the corresponding carbon compounds. For example, $\mathrm{Si}(\mu-\mathrm{H})_{2} \mathrm{Si}$ was predicted to be the global minimum on the PES of $\mathrm{Si}_{2} \mathrm{H}_{2}{ }^{17 \mathrm{c}}$ rather than $\mathrm{HSi} \equiv \mathrm{SiH}$, and this was verified spectroscopically. ${ }^{14}$ Similarly, silylsilylene $\left(\mathrm{HSi}-\mathrm{SiH}_{3}\right)$ and $\mathrm{HSi}(\mu-\mathrm{H})_{2} \mathrm{SiH}$ were calculated to be energetically competitive alternatives to disilene $\left(\mathrm{H}_{2} \mathrm{Si}=\mathrm{SiH}_{2}\right) .{ }^{17 \mathrm{~d}}$ The spectroscopic identification of $\mathrm{HSi}(\mu-\mathrm{H}) \mathrm{Si}^{18 \mathrm{a}}$ (after its theoretical prediction) ${ }^{17 \mathrm{c}}$ and the X-ray structure of a silylene chelate complex ${ }^{18 b}$ confirm the stability of molecules with divalent silicon. Systematic

1a, $C_{2}, 0.0 \mathrm{kcal} / \mathrm{mol}(0)$

2a, $C_{2}, 6.2 \mathrm{kcal} / \mathrm{mol}(0)$

2c, $C_{2 v}, 28.8 \mathrm{kcal} / \mathrm{mol}(1)$

6. $C_{2}, 10.9 \mathrm{kcal} / \mathrm{mol}(0)$

3a, $D_{2 \mathrm{~h}}, 7.4 \mathrm{kcal} / \mathrm{mol}$ (3)

7, $C_{\mathrm{s}}, 2.0 \mathrm{kcal} / \mathrm{mol}(0)$

8a. $C_{2 v}, 1.9 \mathrm{keal} / \mathrm{mol}(1)$

9. $C_{\mathrm{s}} .7 .3 \mathrm{kcal} / \mathrm{mol}(0)$

8b, $C_{2}, 31.9 \mathrm{kcal} / \mathrm{mol}$ (2)

10, $C_{1}, 11.3 \mathrm{kcal} / \mathrm{mol}(0)$

3b. $D_{2 \mathrm{~h}}, 23.6 \mathrm{kcal} / \mathrm{mol}(1)$

4a. $D_{2 \mathrm{~h}}, 15.4 \mathrm{kcal} / \mathrm{mol}(\mathrm{l})$

3c, $D_{2} .5 .3 \mathrm{kcal} / \mathrm{mol}$ (1)

4b, $D_{2 h}, 71.0 \mathrm{kcal} / \mathrm{mol}(3)$

$11 \mathrm{~b}, C_{2 \mathrm{v}} \cdot 16.2 \mathrm{kcal} / \mathrm{mol}(0)$

$11 \mathrm{c}, \mathrm{C}_{\mathrm{s}}, 18.4 \mathrm{kcal} / \mathrm{mol}$ (1)

13. $C_{2 \mathrm{v}}, 61.2 \mathrm{kcal} / \mathrm{mol}$ (1)

12, $C_{2 v}, 73.4 \mathrm{kcal} / \mathrm{mol}$ (3)

Figure 2. Becke3LYP/6-311+G** optimized geometries (distances in angstroms and angles in degrees) for $\mathbf{1 - 2 3}$.
investigations of silicon-phosphorus compounds $\left(\mathrm{SiH}_{m} \mathrm{PH}_{n}, m\right.$ $+n=0-5$) at the G 2 level also indicate preference for structures with divalent silicon. ${ }^{19}$ The multicenter bonded $\mathrm{B}-\mathrm{H}-\mathrm{B}$ and $\mathrm{Si}-\mathrm{H}-\mathrm{Si}$ moieties in boranes and silicon hydrides predicted theoretically ${ }^{11-13}$ and observed experimentally ${ }^{14,18}$ suggest similar bonding characteristics $(\mathrm{B}-\mathrm{H}-\mathrm{Si})$ for the hybrid, silaboranes, in addition to structures with low-valent silicon.

Hence, unusual structures and energies of $\mathrm{Si}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}$ isomers, compared with boranes, carboranes, and silicon hydrides, can be expected. The parent compounds might be observed in the gas phase or in matrix isolation. Hydrogen-bridged and other structures might be realized in condensed phases when bulky substituents are present. There are numerous precedents. ${ }^{6,9,14,18}$ We have employed ab initio MO and DFT computations to explore the intriguing structural diversity of the $\mathrm{Si}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}$ PES.

Computational Details

The geometries (Figure 2) were optimized at the electroncorrelated MP2(fc)/6-31G* (MP2) $)^{20 a}$ and Becke3LYP/6-311+G**
(B3LYP) ${ }^{20 c-e}$ levels using the Gaussian 92/DFT and Gaussian 94 program packages. ${ }^{21}$ The nature of the stationary points were characterized by analytically computed frequencies both at MP2 and B3LYP. The total, relative, and zero-point energies are given in Table 1. Relative energies computed at MP2 include scaled (0.95) zero-point vibrational energy corrections. ${ }^{20 \mathrm{~b}}$ No scaling was used for the B3LYP zero-point vibrational energies. ${ }^{22}$ The stability order of all the structures is comparable at both levels of theory. Hence, only the B3LYP geometries and energies are discussed. ${ }^{23}$ Natural population analysis (NPA) charges ${ }^{24 a, b}$ and Wiberg bond indices (WBIs) ${ }^{24 c, d}$ for all minimum-energy structures are given in Figure 3.

Results and Discussion

Nonplanar 1,3-disiladiboretene ($C_{2 v}, \mathbf{1 a}$), the most stable $\mathrm{Si}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}$ isomer, is puckered ${ }^{25}$ by 24.2° and has an inversion barrier of only $1.2 \mathrm{kcal} / \mathrm{mol}$ via the $D_{2 h}$ transition structure $\mathbf{1 b}$. The analogous 1,3-diboretene ($C_{2 v}$) is low in energy, but is not the $\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}$ global minimum. ${ }^{8}$ The isovalent and isoelectronic $\mathrm{C}_{4} \mathrm{H}_{4}{ }^{2+}$ and $\mathrm{Si}_{4} \mathrm{H}_{4}{ }^{2+}$ also prefer similar puckered structures

TABLE 1: Total (hartrees), Relative (kcal/mol), and Zero-Point Vibrational Energies (ZPE, kcal/mol) for 1-23 at the MP2-fc/ 6-31G* (MP2) and BECKE3LYP/6-311 $+\mathrm{G}^{* *}$ (B3LYP) Levels of Optimization (The Number of Imaginary Frequencies (NIM) Are Given in Parentheses)

no.	sym.	total energy		relative energy		ZPE (NIM)	
		MP2	B3LYP	MP2	B3LYP	MP2	B3LYP
$\mathrm{C}_{4} \mathrm{H}_{4}{ }^{++}$	$D_{4 h}$	-153.34358	-153.886 52	10.9	8.7	39.0(1)	38.4(1)
$\mathrm{C}_{4} \mathrm{H}_{4}{ }^{2+}$	$D_{2 d}$	-153.36080	-153.899 86	0.0	0.0	38.9(0)	38.1(0)
$\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}$	$D_{2 h}$	-127.736 46	-128.264 99	20.7	17.0	35.3(1)	34.5(1)
$\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}$	$C_{2 v}$	-127.769 89	-128.292 46	0.0	0.0	35.6(0)	34.7(0)
$\mathrm{Si}_{4} \mathrm{H}_{4}{ }^{2+}$	$D_{4 h}$	-1157.528 95	-1159.686 11	-0.2	-0.5	22.4(1)	21.4(1)
$\mathrm{Si}_{4} \mathrm{H}_{4}{ }^{++}$	D_{2}	-1157.529 04	-1159.68670	0.0	0.0	22.7(0)	22.3(0)
1a	$C_{2 v}$	-629.747 37	-631.073 66	0.0	0.0	27.0(0)	26.2(0)
1b	$D_{2 h}$	-629.743 77	-631.07138	2.1	1.2	26.8(1)	26.0(1)
2a	C_{2}	-629.735 24	-631.063 29	7.3	6.2	26.7(0)	25.9(0)
2b	$C_{2 v}$	-629.727 56	-631.059 20	12.0	8.7	26.5(1)	25.8(1)
2c	$C_{2 v}$	-629.700 49	-631.026 19	28.3	28.2	25.8(1)	25.2(1)
3a	$D_{2 h}$	-629.730 83	-631.059 66	9.3	7.4	25.9(3)	24.8(3)
3b	$D_{2 h}$	-629.708 14	-631.035 65	24.6	23.6	27.0(1)	25.9(1)
3c	D_{2}	-629.738 11	-631.064 24	5.7	5.3	26.9(1)	25.6(1)
4a	$D_{2 h}$	-629.725 64	-631.048 81	13.9	15.4	27.3(1)	26.0(1)
4b	$D_{2 h}$	-629.61174	-630.958 06	82.9	71.0	24.7(3)	24.7(2)
4c	$C_{2 v}$	-629.72600	-631.059 20	13.1	8.2	26.7(1)	25.3(1)
5	C_{1}	-629.746 68	-631.070 74	1.3	2.0	27.9(0)	26.4(0)
6	C_{2}	-629.735 41	-631.058 10	9.5	10.9	29.1(0)	27.3(0)
7	C_{s}	-629.74704	-631.070 28	0.1	2.0	26.9(0)	26.1(0)
8a	$C_{2 v}$	-629.74502	-631.06959	0.7	1.9	26.2(1)	25.5(1)
8b	$C_{2 v}$	-629.69406	-631.021 29	32.3	31.9	25.8(2)	25.2(2)
9	C_{s}	-629.746 69	-631.064 18	2.0	7.3	28.7(0)	27.6(0)
10	C_{1}	-629.734 45	-631.055 08	8.7	11.3	27.6(0)	25.8(0)
11a	$C_{2 v}$	-629.646 80	-630.988 23	63.4	53.6	27.3(2)	26.2(2)
11b	$C_{2 v}$	-629.729 47	-631.050 61	13.4	16.2	29.3(0)	27.9(0)
11c	C_{s}	-629.715 32	-631.044 77	20.8	18.4	27.7(1)	26.5(1)
12	$C_{2 v}$	-629.601 34	-630.95202	90.9	73.4	26.2(3)	23.3(3)
13	$C_{2 v}$	-629.657 40	-630.974 50	61.2	61.2	32.0(1)	25.2(1)
14a	$C_{2 v}$	-629.686 26	-631.019 66	36.4	32.3	24.9(1)	24.6(1)
14b	$C_{2 v}$	-629.61573	-630.958 33	79.3	70.5	23.5(3)	24.3(2)
15a	$C_{2 v}$	-629.701 03	-631.027 84	28.1	27.1	26.0(0)	24.5(0)
15b	$C_{2 v}$	-629.69728	-631.024 62	30.9	29.8	26.4(2)	25.2(2)
16	$C_{2 v}$	-629.61655	-630.95151	81.2	76.2	26.1(3)	25.7(3)
17	$C_{2 v}$	-629.556 81	-630.909 93	115.9	98.8	23.1(4)	22.3(4)
18	C_{2}	-629.658 51	-631.009 23	53.8	38.2	24.9(0)	24.0(0)
19a	$C_{2 v}$	-629.68202	-631.019 47	41.1	33.9	27.1(2)	26.1(1)
19b	$C_{2 v}$	-629.660 45	-630.998 18	54.2	46.7	26.6(2)	25.5(2)
20	$C_{2 v}$	-629.603 41	-630.947 84	87.5	76.2	24.0(3)	23.4(3)
21a	$D_{2 h}$	-629.658 77	-630.989 79	55.8	52.2	27.2(2)	25.8(3)
21b	$D_{2 d}$	-629.666 90	-631.006 71	50.6	41.8	27.1(2)	26.0(2)
22a	$D_{2 h}$	-629.621 57	-630.958 76	79.0	70.5	27.1(0)	24.6(0)
22b	$D_{2 d}$	-629.644 69	-630.998 45	62.0	44.9	24.4(0)	23.9(0)
23a	$C_{2 v}$	-629.607 57	-630.950 37	85.2	73.8	24.4(2)	22.6(2)
23b	$C_{2 h}$	-629.623 69	-630.967 01	77.0	65.6	26.3(1)	24.9(1)

(Figure 1). ${ }^{1 \mathrm{~b}, 7}$ We have refined the calculations on these isoelectronic and isovalent systems at uniform levels of theory (MP2 and B3LYP) to enable direct comparisons. Table 2 reveals the excellent correlation between the relative energies (ΔE), the puckering angles $(\Delta \Theta)$, and the shortening of the transannular distance (ΔD) upon folding. In addition, a comparison of the molecular orbitals (MOs) of the two forms (for example 1a, 1b in Scheme 1) shows that the 1,3-antibonding interaction ($\mathrm{b}_{2 \mathrm{u}}$) of the σ orbitals in the planar structure diminishes on puckering $\left.\left(b_{2}\right)\right)^{5 a}$ This stabilizing interaction ($\Delta \sigma$ $=E_{\mathrm{b} 2}-E_{\mathrm{b} 2 \mathrm{u}}$) also follows the trends in relative energies (Table 2). Unlike the σ framework, the π orbital has positive 1,3 overlap ($\mathrm{b}_{3 \mathrm{u}}$), which is destabilized marginally ($\Delta \pi=E_{\mathrm{a} 1}-$ $E_{\mathrm{b} 3 \mathrm{u}}$) upon puckering (Scheme 1). However, the net effect of the σ and π MOs is stabilizing, except for $\mathrm{Si}_{4} \mathrm{H}_{4}{ }^{2+}$. This qualitative interpretation is reflected in the increased transannular Wiberg bond indices ($\triangle \mathrm{WBI}$). The NPA charges in $\mathbf{1 a}(\mathrm{Si}=$ 0.607 ; $\mathrm{B}=-0.445$) and in 1,3-diboretene ($\mathrm{C}=-0.593$; $\mathrm{B}=$ 0.395) are opposite in sign due to the reversed electronegativity relationship $(\mathrm{C}=2.5$; $\mathrm{B}=2.0$; and $\mathrm{Si}=1.8) .{ }^{26}$

1,2-Disiladiboretene favors a C_{2} minimum 2a akin to $\mathbf{1 a}$ with a $142.8^{\circ} \mathrm{B}^{3} \mathrm{Si}^{2} \mathrm{~B}^{4} \mathrm{Si}^{1}$ dihedral angle. Planar $\mathbf{2 b}$ is the transition
state for ring flipping; the calculated barrier of $2.5 \mathrm{kcal} / \mathrm{mol}$ is twice that for the 1,3-disiladiboretene ring inversion ($\mathbf{1 a}$ vs $\mathbf{1 b}$). The $B-B(1.654 \AA), B-S i(1.940 \AA)$, and $\mathrm{Si}-\mathrm{Si}(2.196 \AA)$ bonds in $\mathbf{2 a}$ are comparable to the corresponding distances in the model species $\mathrm{H}_{2} \mathrm{~B}-\mathrm{BH}_{2}\left(D_{2 d}, 1.629 \AA\right), \mathrm{H}_{2} \mathrm{~B}-\mathrm{SiH}_{3}\left(C_{s}\right.$, $2.017 \AA$), and $\mathrm{H}_{2} \mathrm{Si}=\mathrm{SiH}_{2}\left(C_{2 h}, 2.173 \AA\right) .{ }^{27}$ The WBIs for $\mathrm{B}-\mathrm{B}$, $\mathrm{B}-\mathrm{Si}$, and $\mathrm{Si}-\mathrm{Si}$ in 2a (1.132, 1.202, and 1.347, Figure 2) are greater than 1.0 , reflecting the delocalized bonding of the puckered four-membered ring electronic structure. The NPA charges in 2a $(\mathrm{Si}=0.443$; $\mathrm{B}=-0.300$), however, are smaller than in 1a. The $6.2 \mathrm{kcal} / \mathrm{mol}$ energy difference between $\mathbf{1 a}$ and 2a is attributed to the weak π-delocalization in 2a. Structure 2c, with short $\mathrm{Si}-\mathrm{Si}$ and $\mathrm{B}-\mathrm{B}$ bonds, is a transition state, 28.8 $\mathrm{kcal} / \mathrm{mol}$ higher in energy than 1a.

The tendency of silicon to favor divalent structures, e.g. in silicon hydrides and silaboranes, ${ }^{11-15,17}$ prompted us to explore similar possibilities on the $\mathrm{Si}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}$ PES. Although having short transannular $\mathrm{Si}-\mathrm{Si}$ and $\mathrm{B}-\mathrm{B}$ distances, structures $\mathbf{3 a}-\mathbf{3 c}$ and $\mathbf{4 a}-\mathbf{4 c}$ are not minima. The D_{2} transition state, $\mathbf{3 c}$, collapses to the $\mathrm{B}-\mathrm{H}-\mathrm{Si}$ monobridged isomer, 5 , upon relaxation of symmetry constraints. Indeed, $\mathbf{5}$ is the second most stable $\mathrm{Si}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}$ minimum. The $\mathrm{B}-\mathrm{H}(1.280 \AA)$ and $\mathrm{H}-\mathrm{Si}(1.848 \AA)$

Figure 3. Natural population analysis charges and Wiberg bond indices (in parentheses) of $\mathrm{Si}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}$ isomers at Becke3LYP/6-311+G** optimized geometries.

TABLE 2: Changes in Geometries, Energies, and Electronic Structures of $\mathbf{1 , 3}-\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}, \mathrm{C}_{4} \mathrm{H}_{4}{ }^{\mathbf{2}}, \mathbf{1 , 3 - \mathrm { Si } _ { 2 } \mathrm { B } _ { 2 } \mathrm { H } _ { 4 }}$, and $\mathrm{Si}_{4} \mathbf{H}_{4}{ }^{\mathbf{2}}$ upon Puckering (at Becke3LYP/6-311+G**)

molecule	ΔE^{a}	$\Delta \Theta^{b}$	ΔD^{c}	$\Delta \sigma^{d}$	$\Delta \pi^{e}$	Δ WBI f
$1,3-\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}$	-17.0	51.3	-0.369	-25.1	0.0	0.177
$\mathrm{C}_{4} \mathrm{H}_{4}{ }^{2+}$	-8.7	43.7	-0.106	-15.7	0.6	0.037
$1,3-\mathrm{Si}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}$	-1.2	24.2	-0.076	-5.0	3.8	0.016
$\mathrm{Si}_{4} \mathrm{H}_{4}{ }^{2+}$	0.5	10.5	-0.005	0.6	3.8	-0.002

${ }^{a} \Delta E=E_{\text {puckered }}-E_{\text {planar }}$ in $\mathrm{kcal} / \mathrm{mol} .^{b} \Delta \Theta$ is the puckering angle in degrees (ref 25). ${ }^{c} \Delta D$ is the difference in the 1,3 transannular distance (puckered - planar) in \AA. ${ }^{d} \Delta \sigma=\left[E\left(\mathrm{~b}_{2}\right)-E\left(\mathrm{~b}_{2 \mathrm{u}}\right)\right]$ at B3LYP level in $\mathrm{kcal} / \mathrm{mol}$ (refer to Scheme 1 for symmetry labels). ${ }^{e} \Delta \pi=\left[E\left(\mathrm{a}_{1}\right)\right.$ $\left.-E\left(\mathrm{~b}_{3 \mathrm{u}}\right)\right]$ at B3LYP level in $\mathrm{kcal} / \mathrm{mol}$ (refer to Scheme 1 for symmetry labels). ${ }^{f} \Delta \mathrm{WBI}=1,3-\mathrm{WBI}_{\text {puckered }}-1,3-\mathrm{WBI}_{\text {planar }}$.

SCHEME 1

bridge bond lengths in 5 deviate significantly from the corresponding distances in $\mathrm{B}_{2} \mathrm{H}_{6}(1.316 \AA)$ and in cis $-\mathrm{HSi}(\mu-\mathrm{H})_{2} \mathrm{SiH}$ $(1.680 \AA) .{ }^{27}$ The $\mathrm{B}-\mathrm{H}(0.733)$ and $\mathrm{H}-\mathrm{Si}(0.201)$ WBIs quantify the $\mathrm{B}-\mathrm{H}-\mathrm{Si}$ bonding interaction (Figure 3). The $\mathrm{B}-\mathrm{H}-\mathrm{Si}$ bridge could be viewed either as a $2 \mathrm{c}-2 \mathrm{e} \mathrm{B}-\mathrm{H}$ bond hyperconjugating with the p orbital on silicon or, alternatively,
as a $3 \mathrm{c}-2 \mathrm{e}$ bridge polarized toward $\mathrm{B}-\mathrm{H}$. Attempts to localize the MOs of 5 using the natural bond orbital (NBO) procedure ${ }^{24 a, b}$ result in poor descriptions, implying that the bonding is highly delocalized. Although the $\mathrm{Si}-\mathrm{Si}$ distance in $5(2.466 \AA)$ is longer than in $\mathrm{Si}_{2} \mathrm{H}_{6}(2.355 \AA),{ }^{27}$ the significant WBI (0.586) shows that $\mathbf{5}$ is bicyclic. Another bicyclic isomer, $\mathbf{6}$ (SiBBSi dihedral angle is 131.5°), is $10.9 \mathrm{kcal} / \mathrm{mol}$ higher in energy than 1a. The strong $B-B$ bonding in 6 is evident from the WBI of 0.831 , with the $\mathrm{B}-\mathrm{B}$ distance $(1.735 \AA$) close to the calculated $\mathrm{B}-\mathrm{B}$ bond length in $\mathrm{B}_{2} \mathrm{H}_{4}\left(1.744 \AA, D_{2 h}\right) .{ }^{27} \mathrm{~A} \sigma$ lone pair orbital on each silicon and $3 \mathrm{c}-2 \mathrm{e} \mathrm{B}-\mathrm{H}-\mathrm{Si}$ bonding describe part of the electronic structure of $\mathbf{6}$. The extent of multicenter bonding is quantified by the WBI data (Figure 3).

The $\mathrm{B}-\mathrm{H}-\mathrm{Si}$ monobridged isomer 7 with planar tetracoordinate boron ${ }^{28}$ is related via a $\mathrm{B}-\mathrm{H}$ wagging motion to the nearly isoenergetic $C_{2 v}$ transition state 8a. ${ }^{7 \mathrm{~b}}$ The all-planar alternative $\mathbf{8 b}$ is a second-order saddle point. The molecular orbitals of 7 include a lone pair on Si and cyclic π-delocalization on the BSiB ring and fail to localize to a Lewis description in terms of NBOs due to the strongly delocalized electronic structure.

As is shown by the significant WBIs, isomer 9 possesses a covalently bound planar pentacoordinate boron with unsymmetrical and polarized $\mathrm{B}-\mathrm{H}-\mathrm{Si}$ and $\mathrm{B}-\mathrm{H}-\mathrm{B}$ bridges (Figure 3). The HOMO corresponds to an $\mathrm{Si}-\mathrm{B}-\mathrm{Si} \pi$ orbital. In addition, a σ lone pair orbital on each silicon and a $3 \mathrm{c}-2 \mathrm{e}$ BBSi bridge is included in the electronic structure description. No Lewis structure is appropriate. When both the bridging hydrogens in 9 become $\mathrm{Si}-\mathrm{H}$ and $\mathrm{B}-\mathrm{H}$ terminal bonds, as in 10, the energy increases by $4.0 \mathrm{kcal} / \mathrm{mol}$. This suggests that the $\mathrm{B}-\mathrm{H}-\mathrm{Si}$ and $\mathrm{B}-\mathrm{H}-\mathrm{B}$ bonds in 9 contribute to the stability of the molecule. The molecule orbitals of $\mathbf{1 0}$ feature a lone pair orbital on Si and $\mathrm{SiBSi} \pi$-delocalization.

The symmetrically hydrogen bridged cyclic structure 11a possesses two imaginary frequencies, while 11b, with the Si -$\mathrm{H}-\mathrm{Si}$ fragment perpendicular to $\mathrm{HB}-\mathrm{H}-\mathrm{BH}$, is a minimum. Consequently, the $\mathrm{B}-\mathrm{B}$ and $\mathrm{Si}-\mathrm{Si}$ distances in 11b are shortened, but the $\mathrm{B}-\mathrm{Si}$ bonds are elongated relative to 11a. The electronic structure of 11b includes two lone pair MOs and triangulated multicenter bonding patterns. The transition structure 11c corresponding to the rotation of the $-\mathrm{BH}_{2}$ moiety is $2.2 \mathrm{kcal} / \mathrm{mol}$ above 11b. Structure 12, with a symmetrical $\mathrm{Si}(\mu-\mathrm{H})_{2} \mathrm{Si}$ bridge, is a higher order saddle point. In the transition structure 13, only the bonding combination of the lone pair orbitals is occupied, while the antibonding combination is replaced by the $\mathrm{Si}-\mathrm{Si} \pi$ orbital instead.

Interest in the $\mathrm{B}_{2} \mathrm{Si}-$ and $\mathrm{Si}_{2} \mathrm{~B}-$ cyclic structures stem from the corresponding carboranes. ${ }^{8}$ Krogh-Jesperson et al. ${ }^{29}$ predicted that 2,3-diboramethylenecyclopropane ($2,3-\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}$) favors an anti-van't Hoff (perpendicular) over a planar stereochemistry (although neither was found to be a minimum). ${ }^{.}{ }^{\text {b }}$ Likewise, $\mathbf{1 4 a}$ and $\mathbf{1 4 b}$ represent the anti-van't Hoff and van't Hoff stereochemistry among $\mathrm{Si}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}$ structures. While $\mathbf{1 4 a}$ is favored by $38.2 \mathrm{kcal} / \mathrm{mol}$ over $\mathbf{1 4 b}$, neither is a minimum (Table 1). However, 15a, with an exocyclic $-\mathrm{BH}_{2}$ substituent on the $\mathrm{Si}_{2} \mathrm{~B}$ ring and a planar pentacoordinate boron, is a minimum. This isomer can be related to the most stable isomer of $\mathrm{B}_{3} \mathrm{H}_{5}{ }^{30}$ considering the isolobal analogy between $\mathrm{H}-\mathrm{BH}_{2}$ and : $\mathrm{SiH}_{2} .{ }^{13}$ The planar conformer, $\mathbf{1 5 b}$, is a higher order stationary point. In sharp contrast to the carboranes, ${ }^{8,29}$ 15a prefers bridged $\mathrm{B}-\mathrm{H}-\mathrm{Si}$ bonds over terminal $\mathrm{Si}-\mathrm{H}$ bonds. The $\mathrm{Si}-\mathrm{H}$ distance ($1.615 \AA$) is shorter and the $\mathrm{B}-\mathrm{H}(1.393 \AA)$ longer compared to normal bridge bonds, ${ }^{27}$ but the MO pattern accounts for the $\mathrm{B}-\mathrm{H}-\mathrm{Si}$ description supported further by the WBIs (Figure 3). The $C_{2 v}$ structures 16 and 17 , with symmetrical $\mathrm{B}-\mathrm{H}-\mathrm{B}$ and $\mathrm{Si}-\mathrm{H}-\mathrm{Si}$ bridges, are higher order stationary points and hence not discussed further. Thus, all the hydrogen-bridged isomers (Figure 3) exhibit three-center two-electron bonding involving boron and silicon. Such $3 \mathrm{c}-2 \mathrm{e}$ bonding involving three different elements is rare, since the necessary balance in the electronic structure is not often achievable. ${ }^{31}$

Of all the acyclic minima, 18, with divalent silicons and similar to $\mathrm{B}_{2} \mathrm{H}_{4}\left(D_{2 d}\right)$, has the lowest relative energy ($38.2 \mathrm{kcal} /$ mol, Table 1). The hyperconjugative interactions between the $\mathrm{Si}-\mathrm{B}$ bonds and the boron p orbitals are reflected in the short B -B distance ($1.615 \AA$ compared to $1.744 \AA$ in $D_{2 h} \mathrm{~B}_{2} \mathrm{H}_{4}$) and the WBI greater than 1.0 (Figure 3). Boryl-substituted disilavinylidene 19a and 19b are not minima. Similarly, 20, analogous to a transition state for the interconversion of $1,2-$ to 1,3-diboretene on the $\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{H}_{4} \mathrm{PES},{ }^{8}$ is a higher order saddle point. The linear structures 21a and 21b also are not minima. The corresponding carboranes were predicted to be close in energy to 1,3 -diboretene. ${ }^{8}$ Substitution of the hydrogen by an $-\mathrm{SiH}_{2}$ group in $\mathrm{B}_{2} \mathrm{H}_{2}$ leads to isomers 22a,b. The $\mathrm{B}-\mathrm{B}(1.473$ \AA) and $\mathrm{B}-\mathrm{Si}(1.864 \AA)$ bonds in planar 22a are comparable to that in $\mathrm{HB}=\mathrm{BH}(1.522 \AA)$ and $\mathrm{H}_{2} \mathrm{Si}=\mathrm{BH}(1.824 \AA) .{ }^{27}$ With orthogonal $-\mathrm{SiH}_{2}$ groups, $\mathbf{2 2 b}$ is favored by $25.6 \mathrm{kcal} / \mathrm{mol}$ over 22a. The hydrogen-bridged quasi linear structures 23a and 23b are high-energy saddle points.

Conclusions

In contrast to the $\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{H}_{4} \mathrm{PES},{ }^{8,29}$ a much larger number of low-energy $\mathrm{Si}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}$ minima ($\mathbf{1 a}, \mathbf{2 a}, \mathbf{5}-\mathbf{7}, \mathbf{9}$, and $\mathbf{1 0}$ are within $12 \mathrm{kcal} / \mathrm{mol}$) has been found. The most stable isomer is $1,3-$ disiladiboretene (1a); the puckered four-membered ring structure is similar to that of 1,3 -diboretene..5,8 However, the computed inversion barrier via the planar 2π aromatic transition state is only $1.2 \mathrm{kcal} / \mathrm{mol}$ for $\mathbf{1 a}$, much lower than the related carborane
barrier ($17.0 \mathrm{kcal} / \mathrm{mol}$) at the B3LYP level. B-H-Si bridged isomers 5 and 7, with divalent silicons, are close in energy to 1a. Isomer 9 , with a planar pentacoordinate boron, is only 7.3 $\mathrm{kcal} / \mathrm{mol}$ less stable than 1a. Isostructural silaborane analogs, $\mathbf{2 a}, \mathbf{8 a}, \mathbf{b}, 14 \mathrm{a}, \mathbf{b}, 20,21 \mathbf{a}, \mathbf{b}$, and 22a,b, of the corresponding carboranes are high-energy structures and/or are characterized to be higher order stationary points.

The striking feature of the more stable isomers is their remarkable tendency to possess $\mathrm{B}-\mathrm{H}-\mathrm{Si}$ bridge bonds; $\mathrm{C}-\mathrm{H}-\mathrm{B}$ $3 \mathrm{c}-2 \mathrm{e}$ bonds do not exist among the corresponding carboranes $\left(\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}\right)$. The PES of $\mathrm{Si}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}$ further demonstrates that isomers with σ lone pairs on silicon and hydrogen bridging (5$\mathbf{7 , 9}, 11 \mathrm{~b}, \mathbf{1 5 a}$) are favorable. This contrasts with the preference for multiply bonded structures (cf. 13, 21b) exhibited by the analogous carboranes, $\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{H}_{4} .{ }^{8}$ Both levels of theory (Becke3LYP/6-311+G** and MP2/6-31G*) employed here give similar results.

The synthesis of several $\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{R}_{4}$ compounds, ${ }^{6,9}$ after their theoretical predictions, ${ }^{5,29}$ suggests that experimental efforts toward preparing derivatives of $\mathrm{Si}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}$ isomers or gas phase reactions involving silicon hydrides and boranes should be rewarding. Furthermore, examples of H -bridged carborane derivatives ${ }^{9 \mathrm{e}}$ stimulate the search for derivatives of the lowenergy H -bridged $\mathrm{Si}_{2} \mathrm{~B}_{2} \mathrm{H}_{4}$ isomers (for example 5, 7, and $\mathbf{9}$), with only the terminal hydrogens replaced by bulky substituents.

Acknowledgment. We dedicate this contribution to Armin Berndt on the occasion of his 60th birthday. E.D.J. and G.S. thank the Council of Scientific and Industrial Research, India. G.S. and A.A.K. thank the Alexander von Humboldt Foundation for Postdoctoral Fellowships. This work was partially supported by the Fonds der Chemischen Industrie, der Deutschen Forschungsgemeinschaft, and the Convex Computer Corporation.

References and Notes

(1) (a) Krogh-Jesperson, K.; Schleyer, P. v. R.; Pople, J. A.; Cremer, D. J. Am. Chem. Soc. 1978, 100, 4301. (b) Chandrasekhar, J.; Schleyer, P. v. R.; Krogh-Jesperson, K. J. Comput. Chem. 1981, 2, 356 . (c) Hess, B. A., Jr.; Ewig, C. S.; Schaad, L. J. J. Org. Chem. 1985, 50, 5869.
(2) (a) Hückel, E. Z. Phys. 1931, 70, 204; 1931, 72, 310. (b) Olah, G. A.; Bollinger, J. M.; Whit, A. M. J. Am. Chem. Soc. 1969, 91, 3667. (c) Pittman, C. U., Jr.; Kress, A.; Kispert, L. D. J. Org. Chem. 1974, 39, 378. (d) Olah, G. A.; Liang, G. J. Am. Chem. Soc. 1976, 98, 3033. (e) Olah, G. A.; Staral, J. S. J. Am. Chem. Soc. 1976, 98, 6290. (f) Rosenstock, H. M.; Draxl, K.; Stiener, B. W.; Herron, J. T. J. Phys. Chem. Ref. Data, Suppl. 1977, 6. (g) Radom, L.; Schaefer, H. F., III. J. Am. Chem. Soc. 1977, 99, 7522. (h) Garratt, P. J. Aromaticity; Wiley: New York, 1986. (i) Friedrich, E. I. The Chemistry of the Cyclopropyl Group; Rappoport, Z., Ed.; Wiley: New York, 1987, and references cited therein. (j) Minkin, V. I.; Glukhovtsev, M. N.; Simkin, B. Ya. Aromaticity and Antiaromaticity. Electronic and Structural Aspects; Wiley-Interscience: New York, 1994.
(3) Bremer, M.; Schleyer, P. v. R. J. Am. Chem. Soc. 1989, 111, 1147.
(4) Olah, G. A.; Liang, G. J. Am. Chem. Soc. 1977, 99, 6045.
(5) (a) Krogh-Jesperson, K.; Cremer, D.; Dill, J. D.; Pople, J. A.; Schleyer, P. v. R. J. Am. Chem. Soc. 1981, 103, 2589. (b) Schleyer, P. v. R.; Budzelaar, P. H. M.; Cremer, D.; Kraka, E. Angew. Chem. 1984, 23, 374. (c) Budzelaar, P. H. M.; Kraka, E.; Cremer, D.; Schleyer, P. v. R. J. Am. Chem. Soc. 1986, 108, 563.
(6) (a) van der Kerk, S. M.; Budzelaar, P. H. M.; van der Kerk-van Hoof, A.; van der Kerk, G. J. M.; Schleyer, P. v. R. Angew Chem., Int. Ed. Engl. 1983, 22, 48. (b) Hildenbrand, M.; Pritzkow, H.; Zenneck, U.; Siebert, W. Angew. Chem., Int. Ed. Engl. 1984, 23, 371. (c) Wehrmann, R.; Pues, C.; Klusik, H.; Berndt, A. Angew. Chem., Int. Ed. Engl. 1984, 23, 372. (d) Hornbach, P.; Hildenbrand, M.; Pritzkow, H.; Siebert, W. Angew. Chem., Int. Ed. Engl. 1986, 25, 1112. (e) Bromm, D.; Stalke, D.; Heine, A.; Meller, A.; Sheldrick, G. M. J. Organomet. Chem. 1990, 386, 1. (f) Pilz, M.; Allwohn, J.; Bühl, M.; Schleyer, P. v. R.; Berndt, A. Z. Naturforsch. 1991, 46b, 1085. (g) Irngartinger, H.; Hauck, J.; Siebert, W.; Hildenbrand, M. Z. Naturforsch. 1991, 46b, 1621.
(7) (a) Korkin, A. A.; Glukhovtsev, M. N.; Schleyer, P. v. R. Int. J. Quantum. Chem. 1993, 46, 137. (b) Due to the anharmonic approximation, inclusion of the zero-point energy to the total energy reverses the stability order in this case as the potential energy surface is very shallow.
(8) (a) Budzelaar, P. H. M.; Schleyer, P. v. R.; Krogh-Jesperson, K. Angew. Chem., Int. Ed. Engl. 1984, 23, 825. (b) Budzelaar, P. H. M.; Krogh-Jesperson, K.; Clark, T.; Schleyer, P. v. R. J. Am. Chem. Soc. 1985, 107, 2773.
(9) (a) Klusik, H.; Berndt, A. Angew Chem., Int. Ed. Engl. 1983, 22, 877. (b) Pues, C.; Berndt, A. Angew Chem., Int. Ed. Engl. 1984, 23, 313. (c) Wieczorek, C.; Allwohn, J.; Schmidt-Lukasch, G.; Hunold, R.; Massa, W.; Berndt, A. Angew Chem., Int. Ed. Engl. 1990, 29, 398. (d) Berndt, A. Angew Chem., Int. Ed. Engl. 1993, 32, 985, and references therein. (e) Steiner, D.; Balzereit, C.; Winkler, H.-J.; Stamatis, N.; Hofmann, M.; Schleyer, P. v. R.; Massa, W.; Berndt, A. Angew Chem., Int. Ed. Engl. 1994, 33, 2303.
(10) (a) Seyferth, D.; Büchner, K.; Rees, Jr.; Davis, W. M. Angew Chem., Int. Ed. Engl. 1990, 29, 918. (b) Seyferth, D.; Büchner, K.; Rees, Jr.; Wesemann, L.; Davis, W. M.; Bukalov, S. S.; Leites, L. A.; Bock, H.; Solonki, B. J. Am. Chem. Soc. 1993, 115, 3586, 11656. (c) Wesemann, L.; Englert, U.; Seyferth, D. Angew. Chem., Int. Ed. Engl. 1995, 34, 2236. (d) Wesemann, L.; Ganter, B. Organometallics 1996, 15, 2569. (e) Wesemann, L.; Englert, U. Angew Chem., Int. Ed. Engl. 1996, 35, 527. (f) Dopke, J. A.; Bridges, A. N.; Schmidt, M. R.; Gaines, D. F. Inorg. Chem. 1996, 35, 7186.
(11) Mains, G. J.; Bock, C. W.; Trachtman, M. J. Phys. Chem. 1989, 93, 1745.
(12) (a) Subramanian, G.; Jemmis, E. D. Chem. Phys. Lett. 1992, 200, 567. (b) Subramanian, G.; Jemmis, E. D.; Prasad, B. V. Chem. Phys. Lett. 1993, 217, 296.
(13) (a) Jemmis, E. D.; Prasad, B. V.; Tsuzuki, S.; Tanabe, K. J. Phys. Chem. 1990, 94, 5530. (b) Jemmis, E. D.; Prasad, B. V.; Prasad, P. V. A.; Tsuzuki, S.; Tanabe, K. Proc. Ind. Acad. Sci. 1990, 102, 107.
(14) (a) Bogey, M.; Bolvin, H.; Demuynck, C.; Destombes, J. L. Phys. Rev. Lett. 1991, 66, 413. (b) Bogey, M.; Bolvin, H.; Cordonnier, M.; Demuynck, C.; Destombes, J. L.; Császár, A. G. J. Chem. Phys. 1994, 100, 8614.
(15) (a) Izuha, M.; Yamamoto, S.; Saito, S. Can. J. Phys. 1994, 72, 1206. (b) Maier, G. Pacl, H.; Reisenauer, H. P.; Meudt, A.; Janoschek, R. J. Am. Chem. Soc. 1995, 117, 12712.
(16) Byun, Y.-G.; Saebo, S.; Pittman, C. U., Jr. J. Am. Chem. Soc. 1991, 113, 3689, and references cited therein.
(17) (a) Luke, B. T.; Pople, J. A.; Krogh-Jesperson, M.-B.; Apeloig, Y.; Karni, M.; Chandrasekhar, J.; Schleyer, P. v. R. J. Am. Chem. Soc. 1986, 108, 270. (b) Frenking, G.; Remington, R. B.; Schaefer, H. F., III. J. Am. Chem. Soc. 1986, 108, 2169. (b) Puranik, D. B.; Fink, M. J. J. Am: Chem. Soc. 1989, 111, 5951. (c) Colegrove, B. T.; Schaefer, H. F., III. J. Phys. Chem. 1990, 94, 5593. (d) Trinquier, G. J. Am. Chem. Soc. 1990, 112, 2130. (e) Vacek, G.; Colegrove, T.; Schaefer, H. F., III, J. Am. Chem. Soc. 1991, 113, 3192. (f) Trinquier, G. J. Am. Chem. Soc. 1992, 114, 6807. (g) Grev, R. S.; Schaefer, H. F., III. J. Chem. Phys. 1992, 97, 7990.
(18) (a) Cordonnier, M.; Bogey, M.; Demuynck, C.; Destombes, J. L. J. Chem. Phys. 1992, 97, 7984. (b) Denk, M.; Lennon, R.; Hayashi, R.; West, R.; Belyakov, A. V.; Verne, H. P.; Haaland, A.; Wagner, M.; Metzler, N. J. Am. Chem. Soc. 1994, 116, 2691.
(19) Bavoul, A. G.; Schlegel, H. B. J. Am. Chem. Soc. 1996, 118, 8444.
(20) (a) Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618. fc stands for frozen core; that is, only valence electrons were considered in the correlation treatment. (b) For details of the basis set: Hehre, W. J.; Radom,
L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986. (c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785. (d) Becke, A. D. Phys. Rev. 1988, A38, 3098. (e) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (f) Foresman, J. B.; Frisch, Æ. Exploring Chemistry with Electronic Structure Methods: A Guide to Using Gaussian; Gaussian Inc.: Pittsburgh, 1993.
(21) Frisch, M. J.; Trucks, G. W.; Schlegel, H. W.; Gill, P. M. W.; Johnson, B. G.; Wong, M. W.; Foresman, J. B.; Robb, M. A.; Head-Gordon, M.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. Gaussian 92/DFT; Gaussian Inc.: Pittsburgh, PA, 1993. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, J. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. Y.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; HeadGordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94; Gaussian Inc.: Pittsburgh, PA, 1995.
(22) (a) Schleyer, P. v. R.; Jiao, H.; Glukhovtsev, M.; Chandrasekhar, J.; Kraka, E. J. Am. Chem. Soc. 1994, 116, 10129. (b) The recommended scaling factor (0.9804) for Becke3LYP/6-31G* zero-point energy is close to unity. Wong, M. W. Chem. Phys. Lett. 1996, 256, 391.
(23) The MP2(fc)/6-31G* geometries are comparable to the Becke3LYP/ $6-311+\mathrm{G}^{* *}$ level and can be obtained from the authors upon request.
(24) (a) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735. (b) Reed, A. E.; Weinhold, F. Chem. Rev. 1988, 88, 899. (c) Wiberg, K. B. Tetrahedron, 1968, 24, 1083. (d) Mayer, I. Theor. Chim. Acta 1985, 67, 315.
(25) The puckering angle is calculated by subtracting the dihedral angle between the two planes of the four-membered ring from 180°.
(26) (a) Pauling, L. Nature of the Chemical Bond, 3rd ed.; Cornell University Press: New York, 1960. (b) Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed.; Harper Collins: New York, 1993.
(27) The geometries of $\mathrm{H}_{2} \mathrm{~B}-\mathrm{BH}_{2}\left(\mathrm{~B}-\mathrm{B}=1.744 \AA ; D_{2 h}\right), \mathrm{H}_{2} \mathrm{~B}-\mathrm{SiH}_{3}$ $\left(\mathrm{B}-\mathrm{Si}=2.017 \AA ; C_{s}\right), \mathrm{H}_{2} \mathrm{Si}=\mathrm{SiH}_{2}\left(\mathrm{Si}-\mathrm{Si}=2.173 \AA ; C_{2 h}\right), \mathrm{H}_{2} \mathrm{~B}(\mu-\mathrm{H})_{2^{-}}$ $\mathrm{BH}_{2}\left(\mathrm{~B}-\mathrm{H}=1.316 \AA ; D_{2 h}\right), \mathrm{HSi}(\mu-\mathrm{H})_{2} \mathrm{SiH}\left(\mathrm{Si}-\mu-\mathrm{H}=1.680 \AA ; C_{2 v}\right)$, $\mathrm{H}_{3} \mathrm{Si}^{-} \mathrm{SiH}_{3}\left(\mathrm{Si}-\mathrm{Si}=2.355 \AA ; D_{3 d}\right), \mathrm{HB}=\mathrm{BH}\left(\mathrm{B}-\mathrm{B}=1.522 \AA ; D_{\infty}\right)$, and $\mathrm{H}_{2} \mathrm{Si}=\mathrm{BH}\left(\mathrm{Si}-\mathrm{B}=1.824 \AA \AA^{\circ} ; C_{2 v}\right)$ optimized at the Becke3LYP/6$311+\mathrm{G}^{* *}$ level were taken from the Quantum Chemistry Archive: Computer Chemistry Center, Universität Erlangen, D-91052 Erlangen, Germany.
(28) Kaufmann, E.; Schleyer, P. v. R. Inorg. Chem. 1988, 27, 3987.
(29) Krogh-Jesperson, K.; Cremer, D.; Poppinger, D.; Pople, J. A.; Schleyer, P. v. R.; Chandrasekhar, J. J. Am. Chem. Soc. 1979, 101, 4843. Also see ref 8.
(30) (a) Bigot, B.; Lequan, R. M.; Devaquet, A. Nouv. J. Chem. 1978, 2, 449. (b) Jemmis, E. D.; Subramanian, G.; Srinivas, G. N. J. Am. Chem. Soc. 1992, 114, 7939. (c) Korkin, A. A.; Schleyer, P. v. R.; McKee, M. L. Inorg. Chem. 1995, 34, 961.
(31) (a) Sannigrahi, A. B.; Nandi, P. K.; Behera, L.; Kar, T. J. Mol. Struct. (THEOCHEM) 1992, 276, 259. (b) Kar, T. J. Mol. Struct. 1993, 283, 313. (c) Lammertsma, K.; Ohwada, T. J. Am. Chem. Soc. 1996, 118, 7247.

[^0]: \dagger University of Hyderabad.
 \# Universität Erlangen-Nürnberg.
 ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, January 1, 1997.

